I B.Tech - I Semester - Regular / Supplementary
 Examinations - APRIL 2022

CALCULUS AND LINEAR ALGEBRA (Common for All Branches)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

UNIT - I

1. a) By applying elementary row operations, find the rank
of the matrix $\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 1 & 1 & 3 & -2 \\ 3 & 1 \\ 6 & 3 & 0 & -7\end{array}\right]$.
b) Investigate for what values of λ and μ the simultaneous equations $x+y+z=6, x+2 y+3 z=10$, $x+2 y+\lambda z=\mu$ have i) no solution ii) a unique solution iii) an infinite number of solutions.

OR

2. a) Construct two non-singular matrices P and Q such that PAQ is in normal form for the matrix
$A=\left[\begin{array}{cccc}2 & 1 & -3 & -6 \\ 2 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2\end{array}\right]$. Hence find its rank.
b) Determine the values of k for which the following equations has non-trivial solutions and find them.
$(k-1) x+(4 k-2) y+(k+3) z=0$,
$(k-1) x+(3 k+1) y+2 k z=0$,
$2 x+(3 k+1) y+3(k-1) z=0$.

UNIT - II

3. a) Verify Cayley Hamilton theorem for the matrix
$A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$. Hence find A^{-1}.
b) Find the eigen values and eigen vectors of the matrix
$A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 1 & 1 & 1\end{array}\right\rfloor$.
4. a) By applying Cayley - Hamilton theorem, express
$2 A^{5}-3 A^{4}+A^{2}-4 I$ as a linear polynomial in A , where $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$.
b) Examine the nature of the quadratic form

$$
3 x^{2}+3 y^{2}+3 z^{2}+2 x y+2 x z-2 y z .
$$

UNIT-III

5. a) By applying Lagrange's mean value theorem, prove that $\frac{\pi}{3}-\frac{1}{5 \sqrt{3}}>\cos ^{-1}\left(\frac{3}{5}\right)>\frac{\pi}{3}-\frac{1}{8}$.
b) Verify Rolles's theorem for $f(x)=(x-a)^{m}(x-b)^{n}$ in $[a, b]$, where m, n are positive integers.

OR

6. a) Expand $\log _{e} x$ in powers of $(x-1)$ and hence evaluate \log. 1.1 . Correct to 4 decimal places.
b) Verify the Cauchy's mean value theorem for the
functions $f(x)=\log _{e} x$ and $g(x)=\frac{1}{x}$ in the interval $[1, e]$.

UNIT - IV

7.

a) If $x=r \cos \theta, y=r \sin \theta$ then show that $\frac{\partial(x, y)}{\partial(r, \theta)} \cdot \frac{\partial(r, \theta)}{\partial(x, y)}=1$.
b) Prove that the functions $u=x y+y z+z x$,
$v=x^{2}+y^{2}+z^{2}, w=x+y+z$ are functionally dependent and also find the relation between them.

OR

8. a) Discuss the maxima and minima of $f(x, y)=x^{3} y^{2}(1-x-y)$.
b) Find the point on the plane $x+2 y+3 z=4$ that is closest to the origin.

UNIT - V

9. a) Change the order of integration and evaluate $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} d y d x$.
b) Evaluate $\iint r^{3} d r d \theta$ over the area included between the circles $r=2 \sin \theta$ and $r=4 \sin \theta$.

OR

10.

a) Evaluate the triple integral $\iint_{0} \int_{0} x d z d x d y$.
b) By applying triple integration, find the volume of the tetrahedron bounded by the planes $x=0, y=0, z=0$, $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.

